

Mark Williams

2nd October 2020

Charm physics at LHCb

Mark Williams

Charm physics at LHCb

Mark Williams

See Dominik Mitzel's talk

This talk

Charm physics at LHCb

Mark Williams

CPV in charm: the post-discovery era

Observation of *CP* violation in charm decays

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

Inconsistent with CP symmetry at $>5\sigma$ level

- Need full Run 1-2 sample to reach discovery sensitivity
- More data gives more precision... $(\sigma_{\text{stat}} \approx 3\sigma_{\text{syst}})$
- SM or BSM?

PRL 122 (2019) 211803

⇒ Must discover and measure CPV in other channels

CP violation snapshot

CPV in decay

Mixing-induced CPV

Twobody $\Delta A_{CP}(D^0 \rightarrow hh)$ and $A_{CP}(hh)$: PRL 108 (2012) 111602 PLB 723 (2013) 33

JHEP 07 (2014) 041 PRL 116 (2016) 191601

PLB 767 (2017) 177 PRL 122 (2019) 211803

 $D_0 \rightarrow K^c_0 K^c_0$

JHEP 10 (2015) 055

JHEP 11 (2018) 048

 $D_{(s)}^+ \rightarrow \eta' \pi^+$

PLB 771 (2017) 21

 $D_{(s)}^+ \rightarrow K_s^0 h^+$

JHEP 06 (2013) 112 JHEP 10 (2014) 025 PRL 122 (2019) 191803 $A_r(D^0 \rightarrow hh)$:

JHEP 1204 (2012) 129 (KK), +y_{CP}

PRL 112 (2014) 041801

JHEP 04 (2015) 043

PRL 118 (2017) 261803

PRD 101 (2020) 012005

 $y_{CP}(hh)$:

PRL 122 (2019) 011802

WS D⁰ \rightarrow K⁺ π ⁻:

PRL 110 (2013) 101802 PRL 111 (2013) 251801

PRD 95 (2017) 052004

PRD 97 (2018) 031101

Multibody

 $D^0 \rightarrow K^-K^+\pi^-\pi^+, \pi^-\pi^+\pi^-\pi^+$: PLB 726 (2013) 623 (S_{CP}) JHEP 10 (2014) 005 (T-odd) PLB 769 (2017) 345 (energy test) JHEP 02 (2019) 126 (AmAn)

 $\Xi_c^+ \rightarrow pK^-\pi^+$ (SCP, KNN) arXiv:2006.03145 (2020)

> $\Lambda_c^+ \rightarrow ph^+h^-$ JHEP 03 (2018) 182

 $D^+ \rightarrow K^- K^+ \pi^+$

PRD 84 (2011) 112008 JHEP 06 (2013) 112

 $D^+ \rightarrow \pi^+ \pi^- \pi^+$:

PLB 728 (2014) 585

 $D^0 \rightarrow \pi^+\pi^-\pi^0$

PLB 740 (2015) 158

 $D^0 \rightarrow K_s^0 \pi^+ \pi^-$

JHEP 04 (2016) 033 (model-indep) PRL 122 (2019) 231802 ('bin-flip')

 $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$

PRL 116 (2016) 241801

https://lhcbproject.web.cern.ch/lhcbproject/ Publications/p/LHCb-PAPER-2015-057.html

Charm physics at LHCb

Mark Williams

(1) $\Delta A_{CP} \rightarrow \text{individual } K^+K^-/\pi^+\pi^- \text{ asymmetries}$

Sample (\mathcal{L})	Tag	Yield	Yield	$\sigma(\Delta A_{CP})$	$\sigma(A_{CP}(hh))$
1 ()	Ö	$D^0 \to \!\! K^- K^+$	$D^0\to\!\!\pi^-\pi^+$	[%]	[%]
Run 1–2 (9 fb ⁻¹)	Prompt	52M	17M	0.03	0.07
Run 1–3 (23 fb ⁻¹)	Prompt	280M	94M	0.013	0.03
Run $1-4 (50 \text{ fb}^{-1})$	Prompt	1G	305M	0.01	0.03
Run $1-5 (300 \text{ fb}^{-1})$	Prompt	4.9G	1.6G	0.003	0.007

Naively, $A_{CP}(KK) = -A_{CP}(\pi\pi)$ $\Rightarrow |A_{CP}| \approx 8 \times 10^{-4}$

Could reach 5σ sensitivity early in Run 5

(1) $\Delta A_{CP} \rightarrow \text{individual } K^+K^-/\pi^+\pi^- \text{ asymmetries}$

						Naively, $A_{CP}(KK) = -A_{CP}(\pi)$
Sample (\mathcal{L})	Tag	Yield	Yield	$\sigma(\Delta A_{C\!P})$	$\sigma(A_{CP}(hh))$	$Marvery, A_{CP}(NN) - A_{CP}(NN)$
- , ,		$D^0 \to\!\! K^- K^+$	$D^0\to\!\!\pi^-\pi^+$	[%]	[%]	$\Rightarrow A_{CP} \approx 8 \times 10^{-4}$
Run 1–2 (9 fb ⁻¹)	Prompt	52M	17M	0.03	0.07	
Run 1–3 (23 fb^{-1})	Prompt	280M	94M	0.013	0.03	Could reach 5o sensitivity
Run 1–4 (50 fb ⁻¹)	Prompt	1G	305M	0.01	0.03	Codid reach 30 sensitivity
Run 1–5 (300 fb ⁻¹)	Prompt	4.9G	1.6G	0.003	0.007	early in Run 5
						-

Dominant uncertainties:

- Kinematic reweighting
 - ⇒ Also reduces effective yield
- Contamination from secondary charm pp→H_b→H_c
 - ⇒ Interplay between ability to suppress and understand residual effect
- Knowledge of detector material
 - ⇒ Need accurate model in simulation and/or new data-driven approaches

(2) Other two-body channels

Channel	σ _{stat} [A _{CP}] (Run 1-5)	σ _{stat} [A _{CP}] Latest	
$D_0 \to K^2_0 K^2_0$	28 × 10 ⁻⁴	~120 × 10 ⁻⁴	Projection for Run 1-2
$D_0 \to K^{2}{}_0K_{*0}$	15 × 10 ⁻⁴		
$D_s^+ \rightarrow K_S^0 \pi^+$	3.2 × 10 ⁻⁴	17 × 10 ⁻⁴	٦
$D_+ \rightarrow K^2_0 K_+$	1.2×10^{-4}	6.1×10^{-4}	6.8fb ⁻¹ (70% of Run 1-2)
$D^{\scriptscriptstyle +} o \varphi \pi^{\scriptscriptstyle +}$	0.6×10^{-4}	4.0×10^{-4}	(7070011141112)
$D_s^+ \to \eta' \pi^+$	3.2×10^{-4}	36 × 10 ⁻⁴	3fb ⁻¹ (Run 1)

+ ongoing A_{CP} measurements with Run 1-2 data for: • $D_{(s)}^+ \rightarrow h^0 h^+ [h^0: \pi^0, \eta]$ • $D^0 \rightarrow V\gamma [V: \varphi, \rho]$

Run 3-5 will need:

- Improved **triggers** for K_S⁰ candidates
- Better **neutral PID** (e.g. γ - π ⁰ separation)
- Where possible, aligned selections between signal and control modes

(3) Multibody final states

Search for 'phase-space localised' CPV driven by intermediate resonances \Rightarrow Successful in B sector, e.g. B⁺ $\rightarrow \pi^+\pi^+\pi^-$

Range of techniques being used in LHCb, with different strengths

(3) Multibody final states

Amplitude analysis example (D⁺ $\rightarrow \pi^-\pi^+\pi^+$):

 5σ sensitivity bounds on the phase difference (°) for main resonances

resonant channel	$9\mathrm{fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300{\rm fb}^{-1}$
$f_0(500)\pi$	0.30	0.13	0.083	0.032
$ ho^0(770\pi$	0.50	0.22	0.14	0.054
$f_2(1270)\pi$	1.0	0.45	0.28	0.11

'Energy Test' example ($D^0 \rightarrow \pi^-\pi^+\pi^-\pi^+$): 3σ sensitivity bounds on magnitude and phase difference for main resonances

R (partial wave)	$9\mathrm{fb}^{-1}$	$23\mathrm{fb^{-1}}$	$50\mathrm{fb^{-1}}$	$300{\rm fb^{-1}}$
$a_1 \rightarrow \rho^0 \pi \text{ (S)}$	1.4%	0.6%	0.4%	0.17%
$a_1 \rightarrow \rho^0 \pi \text{ (S)}$	0.8°	0.35°	0.24°	0.10°
$\rho^0 \rho^0 \; (\mathrm{D})$	1.4%	0.6%	0.4%	0.17%
$\rho^0 \rho^0 \text{ (P)}$	0.8°	0.35°	0.24°	0.10°

Future

Control over nuisance

needs: asymmetries to trust p-values

Improved amplitude models

Methods which scale to very large data samples (e.g. GPUs), or clever techniques to reduce computation (e.g. arXiv:1801.05222)

Next major discovery in charm (after ΔA_{CP}) could be mixing-induced CPV \Rightarrow Big challenge as mixing is so highly suppressed

Also yet to confirm non-zero mass difference (=x) at 5σ level

https://hflav-eos.web.cern.ch/hflav-eos/charm/

(1) Wrong-sign $D^0 \rightarrow K^+\pi^-$

Mixing discovery mode, sensitive to CPV in mixing & interference (q/p) and in decay (A_D)

Currently: $\sigma_{\text{stat}} = 2\sigma_{\text{syst}}$

Leading systematics:

- \Rightarrow Flavour **tagging** (D*)
- ⇒ **Secondary** charm contamination

Sample (\mathcal{L})	Yield $(\times 10^6)$	$\sigma(x_{K\pi}^{\prime 2})$	$\sigma(y_{K\pi}')$	$\sigma(A_D)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9fb^{-1})	1.8	1.5×10^{-5}	2.9×10^{-4}	0.51%	0.12	10°
Run 1–3 (23fb^{-1})	10	6.4×10^{-6}	$1.2 imes 10^{-4}$	0.22%	0.05	4°
Run $1-4 (50 \text{fb}^{-1})$	25	3.9×10^{-6}	7.6×10^{-5}	0.14%	0.03	3°
Run 1–5 (300fb^{-1})	170	1.5×10^{-6}	2.9×10^{-5}	0.05%	0.01	1°

(Statistical uncertainties)

Time- and phase-space dependent analysis

Model-independent (using input from CLEO / BESIII) or amplitude analysis

Latest results (Run 1)

16

 $\sigma_{\text{stat}} = (3-4)*\sigma_{\text{syst}}$

Mark Williams 2 October 2020

(2) Golden mode $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Both promptly produced charm (D*±-tagged) and from secondary B hadron decays (μ-tagged)

Major systematics:

- Detector acceptance / correlations
- Mistagged component (μ-tagged)
- Secondary contamination (D*±-tagged)
- Precision of strong phase inputs (for modelindependent approach)
- Choice of model (amplitude analysis)

All systematics are reducible, but will take care and effort.

Some reliance on simulation – need to ensure access to large and realistic samples

Sample (lumi \mathcal{L})	Tag	Yield	$\sigma(x)$	$\sigma(y)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9 fb $^{-1}$)	SL	10M	0.07%	0.05%	0.07	4.6°
itun 1–2 (9 ib)	Prompt	36M	0.05%	0.05%	0.04	1.8°
Run 1–3 (23 fb $^{-1}$)	SL	33M	0.036%	0.030%	0.036	2.5°
	Prompt	200M	0.020%	0.020%	0.017	0.77°
Run 1–4 (50 fb ⁻¹)	SL	78M	0.024%	0.019%	0.024	1.7°
Rull 1–4 (50 lb)	Prompt	520M	0.012%	0.013%	0.011	0.48°
Run 1–5 (300 fb ⁻¹)	SL	490M	0.009%	0.008%	0.009	0.69°
Run 1–5 (500 lb –)	Prompt	$3500\mathrm{M}$	0.005%	0.005%	0.004	0.18°

(3) Time-dependent CPV: $A_{\Gamma}(D^0 \rightarrow h^+h^-)$

Most precise constraint on timedependent CPV in charm (Run 1-2):

$$A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$$

Major systematics controlled by CF control channel in the same data $[D^0 \rightarrow K^-\pi^+]$ \Rightarrow Stat limited for foreseeable future

Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_\Gamma)$	Yield $\pi^+\pi^-$	$\sigma(A_\Gamma)$
Run 1–2 (9 fb $^{-1}$)	Prompt	60M	0.013%	18M	0.024%
Run 1–3 (23 fb^{-1})	Prompt	310M	0.0056%	92M	0.0104~%
Run $1-4 (50 \text{ fb}^{-1})$	Prompt	793M	0.0035%	236M	0.0065~%
Run 1–5 (300 fb $^{-1}$)	Prompt	5.3G	0.0014%	1.6G	0.0025~%

(Not a) Summary

I didn't discuss:

- CPV in baryons
- Amplitude analyses crucial input on QCD and nature of light states
- Lepton non-universality just starting to explore in SL charm at LHCb
- Measurements of BRs, masses, lifetimes...
- Doubly-charmed baryons

Key developments to watch in LHCb Run 3:

- A new detector. Better vertexing, tracking, and particle ID.
- Expanded use of Turbo trigger. Custom exclusive lines, custom persistence.
- More fast simulation (e.g. ReDecay, SplitSim) to save resources without sacrificing realism.

Thanks for your time

(1a) Wrong-sign $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$

Multibody extension of WS $D^0 \rightarrow K^+\pi^-$

- ⇒ offers even higher sensitivity to CPV
- ⇒ exploit strong phase variation over 5D PhSp

But more challenging

- ⇒ Model / constrain strong phase variation
- ⇒ Control efficiency variation over phase space and decay time (correlated)

Proof-of-principle analyses with Run 2 data now in progress

Sample (\mathcal{L})	Yield $(\times 10^6)$	$\sigma(x'_{K\pi\pi\pi})$	$\sigma(y'_{K\pi\pi\pi})$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9fb^{-1})	0.22	2.3×10^{-4}	2.3×10^{-4}	0.020	1.2°
Run 1–3 (23fb^{-1})	1.29	$0.9 imes 10^{-4}$	$0.9 imes 10^{-4}$	0.008	0.5°
Run 1–4 (50fb^{-1})	3.36	$0.6 imes 10^{-4}$	$0.6 imes 10^{-4}$	0.005	0.3°
Run 1–5 (300fb^{-1})	22.5	0.2×10^{-4}	0.2×10^{-4}	0.002	0.1°

(Statistical uncertainties)